Regression Discontinuity for Causal Effect Estimation in Epidemiology

نویسندگان

  • Catherine E. Oldenburg
  • Ellen Moscoe
  • Till Bärnighausen
چکیده

Regression discontinuity analyses can generate estimates of the causal effects of an exposure when a continuously measured variable is used to assign the exposure to individuals based on a threshold rule. Individuals just above the threshold are expected to be similar in their distribution of measured and unmeasured baseline covariates to individuals just below the threshold, resulting in exchangeability. At the threshold exchangeability is guaranteed if there is random variation in the continuous assignment variable, e.g., due to random measurement error. Under exchangeability, causal effects can be identified at the threshold. The regression discontinuity intention-to-treat (RD-ITT) effect on an outcome can be estimated as the difference in the outcome between individuals just above (or below) versus just below (or above) the threshold. This effect is analogous to the ITT effect in a randomized controlled trial. Instrumental variable methods can be used to estimate the effect of exposure itself utilizing the threshold as the instrument. We review the recent epidemiologic literature reporting regression discontinuity studies and find that while regression discontinuity designs are beginning to be utilized in a variety of applications in epidemiology, they are still relatively rare, and analytic and reporting practices vary. Regression discontinuity has the potential to greatly contribute to the evidence base in epidemiology, in particular on the real-life and long-term effects and side-effects of medical treatments that are provided based on threshold rules - such as treatments for low birth weight, hypertension or diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Discontinuity Designs in Epidemiology: Causal Inference Without Randomized Trials

When patients receive an intervention based on whether they score below or above some threshold value on a continuously measured random variable, the intervention will be randomly assigned for patients close to the threshold. the regression discontinuity design exploits this fact to estimate causal treatment effects. in spite of its recent proliferation in economics, the regression discontinuit...

متن کامل

Regression Discontinuity Designs in Epidemiology

When patients receive an intervention based on whether they score below or above some threshold value on a continuously measured random variable, the intervention will be randomly assigned for patients close to the threshold. The regression discontinuity design exploits this fact to estimate causal treatment effects. In spite of its recent proliferation in economics, the regression discontinuit...

متن کامل

Nonparametric Estimation of Marketing-Mix Effects Using a Regression Discontinuity Design

We discuss how regression discontinuity designs arise naturally in settings where firms target marketing activity at consumers, and discuss how this aspect may be exploited for econometric inference of causal effects of marketing effort. Our main insight is to use commonly observed discreteness and kinks in the heuristics by which firms target such marketing activity to consumers for nonparamet...

متن کامل

Regression Discontinuity Design: Simulation and Application in Two Cardiovascular Trials with Continuous Outcomes.

In epidemiology, the regression discontinuity design has received increasing attention recently and might be an alternative to randomized controlled trials (RCTs) to evaluate treatment effects. In regression discontinuity, treatment is assigned above a certain threshold of an assignment variable for which the treatment effect is adjusted in the analysis. We performed simulations and a validatio...

متن کامل

Identifying Causal Marketing Mix Effects Using a Regression Discontinuity Design

We discuss how regression discontinuity designs arise naturally in settings where firms target marketing activity at consumers, and illustrate how this aspect may be exploited for econometric inference of causal effects of marketing effort. Our main insight is to use commonly observed discontinuities and kinks in the heuristics by which firms target such marketing activity to consumers for nonp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016